Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.107
Filtrar
1.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269594

RESUMO

The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Glutationa/análogos & derivados , Hesperidina/uso terapêutico , Lactoilglutationa Liase/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Resveratrol/uso terapêutico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Quimioterapia Combinada , Indução Enzimática/efeitos dos fármacos , Glutationa/química , Glutationa/uso terapêutico , Glicosilação/efeitos dos fármacos , Hesperidina/química , Humanos , Resistência à Insulina/fisiologia , Lactoilglutationa Liase/antagonistas & inibidores , Camundongos , Estrutura Molecular , Neoplasias Experimentais/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/fisiopatologia , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Resveratrol/química
2.
Comput Math Methods Med ; 2022: 8920861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047060

RESUMO

BACKGROUND: Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1. METHODS: An HO-1 inducer Hemin or an HO-1 inhibitor ZnPP-IX was used to treat the activated HSC-T6, respectively. MTT assay was adopted to detect cell proliferation. Immunocytochemical staining was employed to test the levels of alpha-smooth muscle actin (α-SMA), peroxisome proliferator-activated receptor-γ (PPARγ), and nuclear factor-kappa B (NF-kappa B) levels in HSC-T6. HO-1, PPARγ, and NF-κB expression levels were measured by qRT-PCR and Western blotting. ELISA was then used to detect the levels of transforming growth factor- (TGF-) beta 1 (TGF-ß1), interleukin-6 (IL-6), serum hyaluronic acid (HA), and serum type III procollagen aminopeptide (PIIIP). RESULTS: HSC-T6 proliferation was inhibited in Hemin-treated HSCs. The levels of α-SMA, HA, and PIIIP and the production of ECM were lower in Hemin-treated HSCs, whereas those could be rescued by ZnPP-IX. NF-κB activation was decreased, but PPARγ expression was increased after HO-1 upregulation. Furthermore, the levels of TGF-ß1 and IL-6, which were downstream of activated NF-κB in HSC-T6, were reduced. The PPAR-specific inhibitor GW9662 could block those mentioned effects. CONCLUSIONS: Our data demonstrated that HO-1 induction could inhibit HSC proliferation and activation by regulating PPARγ expression and NF-κB activation directly or indirectly, which makes it a promising therapeutic target for liver fibrosis.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , NF-kappa B/metabolismo , PPAR gama/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Biologia Computacional , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/biossíntese , Hemina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/genética , Protoporfirinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
3.
Bioengineered ; 13(1): 645-654, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967278

RESUMO

Paired related homeobox 1 (PRRX1) is a newly identified transcription factor that regulates the expression of various genes. We aimed to investigate the roles of PRRX1 and Matrix metalloproteinases (MMP)13 in dextran sulfate sodium (DSS)-induced inflammation and barrier dysfunction of NCM460 cells. PRRX1 expression in the mucosal tissues of patients with ulcerative colitis was analyzed using the GSE87466 microarray. PRRX1 and MMP13 expression was examined using Western blotting and RT-qPCR following the exposure of the NCM460 cells to DSS. The JASPAR database was used to predict the binding sites of PRRX1 to the MMP13 promoter, which was verified by luciferase reporter and chromatin immunoprecipitation assays. MMP13 expression was then detected following PRRX1 silencing or overexpression. The levels of inflammatory factors were determined using ELISA. Finally, the expression of intestinal barrier function-related proteins was evaluated using Western blotting and cellular permeability was detected by Transepithelial electrical resistance. PRRX1 was upregulated in the mucosal tissue samples of patients with UC. DSS induction upregulated PRRX1 and MMP13 expression. PRRX1 bound to the promoter of MMP13, which was further supported by the decreased expression of MMP13 observed following PRRX1 knockdown and its increased expression following PRRX1 overexpression. Furthermore, PRRX1 deletion decreased TNF-α, IL-1ß and IL-6 levels in the DSS-challenged NCM460 cells, which were subjected to MMP13 overexpression. Moreover, PRRX1 silencing upregulated ZO-1, occludin and claudin-1 expression and elevated the TEER value, whereas MMP13 overexpression attenuated these effects. Collectively, PRRX1 activates MMP13, which in turn promotes the DSS-induced inflammation and barrier dysfunction of NCM460 cells.


Assuntos
Sulfato de Dextrana/toxicidade , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Metaloproteinase 13 da Matriz/biossíntese , Linhagem Celular , Indução Enzimática/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Metaloproteinase 13 da Matriz/genética
4.
Placenta ; 115: 129-138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619429

RESUMO

INTRODUCTION: The human placenta performs multiple functions necessary for successful pregnancy, but the metabolic pathways and molecular mechanisms responsible for regulating placental development and functions remain incompletely understood. Catabolism of the essential amino acid tryptophan has numerous critical roles in normal physiology, including inflammation. The kynurenine pathway, which accounts for ∼90% of tryptophan breakdown, is mediated by indoleamine 2,3 dioxygenase 1 (IDO1) in the placenta. In pregnant mice, alterations of IDO1 activity or expression result in fetal resorption and a preeclampsia-like phenotype. Decreased IDO1 expression at the maternal-fetal interface has also been linked to preeclampsia, in utero growth restriction and recurrent miscarriage in humans. These collective observations suggest essential role(s) for IDO1 in maintaining healthy pregnancy. Despite these important roles, the precise temporal, cell-specific and inflammatory cytokine-mediated patterns of IDO1 expression in the human placenta have not been thoroughly characterized across gestation. METHODS: Western blot and whole mount immunofluorescence (WMIF) were utilized to characterize and quantify basal and interferon (IFN)-inducible IDO1 expression in 1st trimester (7-13 weeks), 2nd trimester (14-22 weeks) and term (39-41 weeks) placental villi. RESULTS: IDO1 expression is activated in the human placenta between the 13th and 14th weeks of pregnancy, increases through the 2nd trimester and remains elevated at term. Constitutive IDO1 expression is restricted to placental endothelial cells. Interestingly, different types of IFNs have distinct effects on IDO1 expression in the human placenta. DISCUSSION: Our collective results are consistent with potential role(s) for IDO1 in the regulation of vascular functions in placental villi.


Assuntos
Indução Enzimática/efeitos dos fármacos , Idade Gestacional , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Interferons/farmacologia , Placenta/enzimologia , Vilosidades Coriônicas/enzimologia , Células Endoteliais/enzimologia , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Gravidez
5.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716244

RESUMO

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Assuntos
Indicã/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Cinurenina/fisiologia , Terapia de Alvo Molecular , Complicações Pós-Operatórias/enzimologia , Insuficiência Renal Crônica/enzimologia , Trombose/enzimologia , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Animais , Aorta , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Trombose das Artérias Carótidas/prevenção & controle , Meios de Cultura/farmacologia , Indução Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Insuficiência Renal Crônica/tratamento farmacológico , Tromboplastina/metabolismo , Trombose/sangue , Trombose/etiologia , Trombose/prevenção & controle , Triptofano/metabolismo , Uremia/sangue
6.
J Neuroimmunol ; 361: 577724, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34610503

RESUMO

Prostaglandin E2 (PGE2) plays pivotal roles in controlling microglial activation with the EP2 receptor, a PGE2 receptor subtype. Activated microglia are often reported to increase cyclooxygenase (COX)-2 expression, followed by PGE2 production, but it is unclear whether extracellular PGE2 is involved in microglial PGE2 synthesis. In the present study, we report that PGE2 increases COX-2 protein in microglia. In a culture system, PGE2 at 10-6 M for 3 h increased COX-2 and microsomal PGE synthase (mPGES)-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cytosolic PGE synthase (cPGES) in microglia. PGE2 at 10-6 M for 3 h also increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. An EP2 agonist, ONO-AE1-259-01, also increased COX-2 and mPGES-1 mRNA levels, and reduced mPGES-2, but did not affect COX-1 or cPGES, whereas an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, and an EP4 agonist, ONO-AE1-329, had no effect. Similar to PGE2, ONO-AE1-259-01 increased the COX-2 protein level, but did not affect COX-1, mPGES-1, mPGES-2, or cPGES. In addition, the effects of PGE2 were inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6 M. On the other hand, lipopolysaccharide (LPS) increased PGE2 production, but the LPS-induced PGE2 production was not affected by ONO-8713, PF-04418948, ONO-AE3-240, or ONO-AE3-208. These results indicate that PGE2 increases COX-2 protein in microglia through the EP2 receptor supporting the idea that extracellular PGE2 has a triggering aspect for microglial activation.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Dinoprostona/farmacologia , Microglia/efeitos dos fármacos , Animais , Azetidinas/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Ciclo-Oxigenase 1/biossíntese , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Dinoprostona/análogos & derivados , Dinoprostona/biossíntese , Indução Enzimática/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Éteres Metílicos/farmacologia , Microglia/enzimologia , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Prostaglandina-E Sintases/biossíntese , Prostaglandina-E Sintases/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Prostaglandina E Subtipo EP2/agonistas , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores
7.
Cell Death Dis ; 12(11): 971, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671026

RESUMO

While their function, as immune checkpoint molecules, is well known, B7-family proteins also function as regulatory molecules in bone remodeling. B7-H3 is a receptor ligand of the B7 family that functions primarily as a negative immune checkpoint. While the regulatory function of B7-H3 in osteoblast differentiation has been established, its role in osteoclast differentiation remains unclear. Here we show that B7-H3 is highly expressed in mature osteoclasts and that B7-H3 deficiency leads to the inhibition of osteoclastogenesis in human osteoclast precursors (OCPs). High-throughput transcriptomic analyses reveal that B7-H3 inhibition upregulates IFN signaling as well as IFN-inducible genes, including IDO. Pharmacological inhibition of type-I IFN and IDO knockdown leads to reversal of B7-H3-deficiency-mediated osteoclastogenesis suppression. Although synovial-fluid macrophages from rheumatoid-arthritis patients express B7-H3, inhibition of B7-H3 does not affect their osteoclastogenesis. Thus, our findings highlight B7-H3 as a physiologic positive regulator of osteoclast differentiation and implicate type-I IFN-IDO signaling as its downstream mechanism.


Assuntos
Antígenos B7/metabolismo , Diferenciação Celular , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interferon Tipo I/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Animais , Anticorpos Neutralizantes/farmacologia , Artrite Reumatoide/patologia , Antígenos B7/deficiência , Antígenos B7/genética , Indução Enzimática/efeitos dos fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon beta/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Líquido Sinovial/metabolismo , Triptofano/metabolismo
8.
J Neurochem ; 159(3): 590-602, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499746

RESUMO

Morphine is a potent opioid analgesic with high propensity for the development of antinociceptive tolerance. Morphine antinociception and tolerance are partially regulated by the midbrain ventrolateral periaqueductal gray (vlPAG). However, the majority of research evaluating mu-opioid receptor signaling has focused on males. Here, we investigate kinase activation and localization patterns in the vlPAG following acute and chronic morphine treatment in both sexes. Male and female mice developed rapid antinociceptive tolerance to morphine (10 mg/kg i.p.) on the hot plate assay, but tolerance did not develop in males on the tail flick assay. Quantitative fluorescence immunohistochemistry was used to map and evaluate the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), protein kinase-C (PKC), and protein kinase-A (PKA). We observed significantly greater phosphorylated ERK 1/2 in the vlPAG of chronic morphine-treated animals which co-localized with the endosomal marker, Eea1. We note that pPKC is significantly elevated in the vlPAG of both sexes following chronic morphine treatment. We also observed that although PKA activity is elevated following chronic morphine treatment in both sexes, there is a significant reduction in the nuclear translocation of its phosphorylated substrate. Taken together, this study demonstrates increased activation of ERK 1/2, PKC, and PKA in response to repeated morphine treatment. The study opens avenues to explore the impact of chronic morphine treatment on G-protein signaling and kinase nuclear transport.


Assuntos
Indução Enzimática/efeitos dos fármacos , Morfina/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/enzimologia , Proteínas Quinases/biossíntese , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Tolerância a Medicamentos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Proteína Quinase C/metabolismo , Transporte Proteico , Caracteres Sexuais , Proteínas de Transporte Vesicular/biossíntese , Proteínas de Transporte Vesicular/genética
9.
Am J Pathol ; 191(12): 2072-2079, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560064

RESUMO

Bone homeostasis depends on the balance between bone resorption by osteoclasts (OCs) and bone formation by osteoblasts. Bone resorption can become excessive under various pathologic conditions, including rheumatoid arthritis. Previous studies have shown that OC formation is promoted under hypoxia. However, the precise mechanisms behind OC formation under hypoxia have not been elucidated. The present study investigated the role of inducible nitric oxide synthase (iNOS) in OC differentiation under hypoxia. Primary bone marrow cells obtained from mice were stimulated with receptor activator of NF-κB ligand and macrophage colony-stimulating factor to induce OC differentiation. The number of OCs increased in culture under hypoxia (oxygen concentration, 5%) compared with that under normoxia (oxygen concentration, 20%). iNOS gene and protein expression increased in culture under hypoxia. Addition of an iNOS inhibitor under hypoxic conditions suppressed osteoclastogenesis. Addition of a nitric oxide donor to the normoxic culture promoted osteoclastogenesis. Furthermore, insulin-like growth factor 2 expression was significantly altered in both iNOS inhibition experiments and nitric oxide donor experiments. These data might provide clues to therapies for excessive osteoclastogenesis under several hypoxic pathologic conditions, including rheumatoid arthritis.


Assuntos
Hipóxia Celular/fisiologia , Óxido Nítrico Sintase Tipo II/fisiologia , Osteoclastos/fisiologia , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , ômega-N-Metilarginina/farmacologia
10.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206530

RESUMO

Vitamins K exert a range of activities that extend far beyond coagulation and include anti-inflammatory effects, but the mechanisms involved in anti-inflammatory action remain unclear. In the present study, we showed that various forms of exogenous vitamins-K1, K3, K2 (MK-4, MK-5, MK-6 and MK-7)-regulated a wide scope of inflammatory pathways in murine macrophages in vitro, including NOS-2, COX-2, cytokines and MMPs. Moreover, we demonstrated for the first time that macrophages are able to synthesise endogenous MK-4 on their own. Vitamins with shorter isoprenoid chains-K1, K3 and MK-5-exhibited stronger anti-inflammatory potential than vitamins with longer isoprenoid chains (MK-6 and MK-7) and simultaneously were preferably used as a substrate for MK-4 endogenous production. Most interesting, atorvastatin pretreatment inhibited endogenous MK-4 production but had no impact on the anti-inflammatory activity of vitamins K. In summary, our results demonstrate that macrophages are able to synthesise endogenous MK-4 using exogenous vitamins K, and statin inhibits this process. However, the anti-inflammatory effect of exogenous vitamins K was independent of endogenous MK-4 synthesis.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos/metabolismo , Vitamina K/farmacologia , Animais , Atorvastatina/farmacologia , Respiração Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/biossíntese , Citocinas/biossíntese , Eicosanoides/biossíntese , Indução Enzimática/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Especificidade por Substrato/efeitos dos fármacos
11.
J Neurosci ; 41(35): 7340-7349, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34290083

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease marked by the accumulation of amyloid-ß (Aß) plaques and neurofibrillary tangles. Aß oligomers cause synaptic dysfunction early in AD by enhancing long-term depression (LTD; a paradigm for forgetfulness) via metabotropic glutamate receptor (mGluR)-dependent regulation of striatal-enriched tyrosine phosphatase (STEP61). Reelin is a neuromodulator that signals through ApoE (apolipoprotein E) receptors to protect the synapse against Aß toxicity (Durakoglugil et al., 2009) Reelin signaling is impaired by ApoE4, the most important genetic risk factor for AD, and Aß-oligomers activate metabotropic glutamate receptors (Renner et al., 2010). We therefore asked whether Reelin might also affect mGluR-LTD. To this end, we induced chemical mGluR-LTD using DHPG (Dihydroxyphenylglycine), a selective mGluR5 agonist. We found that exogenous Reelin reduces the DHPG-induced increase in STEP61, prevents the dephosphorylation of GluA2, and concomitantly blocks mGluR-mediated LTD. By contrast, Reelin deficiency increased expression of Ca2+-permeable GluA2-lacking AMPA receptors along with higher STEP61 levels, resulting in occlusion of DHPG-induced LTD in hippocampal CA1 neurons. We propose a model in which Reelin modulates local protein synthesis as well as AMPA receptor subunit composition through modulation of mGluR-mediated signaling with implications for memory consolidation or neurodegeneration.SIGNIFICANCE STATEMENT Reelin is an important neuromodulator, which in the adult brain controls synaptic plasticity and protects against neurodegeneration. Amyloid-ß has been shown to use mGluRs to induce synaptic depression through endocytosis of NMDA and AMPA receptors, a mechanism referred to as LTD, a paradigm of forgetfulness. Our results show that Reelin regulates the phosphatase STEP, which plays an important role in neurodegeneration, as well as the expression of calcium-permeable AMPA receptors, which play a role in memory formation. These data suggest that Reelin uses mGluR LTD pathways to regulate memory formation as well as neurodegeneration.


Assuntos
Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Proteína Reelina/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Indução Enzimática/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Memória/fisiologia , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Picrotoxina/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Proteínas Recombinantes/metabolismo , Proteína Reelina/deficiência , Proteína Reelina/genética
12.
J Pharmacol Exp Ther ; 379(1): 53-63, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34312179

RESUMO

In receptor-type transcription factors-mediated cytochrome P450 (P450) induction, few studies have attempted to clarify the roles of protein kinase N (PKN) in the transcriptional regulation of P450s. This study aimed to examine the involvement of PKN in the transcriptional regulation of P450s by receptor-type transcription factors, including the aryl hydrocarbon receptor, constitutive androstane receptor (CAR), and pregnane X receptor. The mRNA and protein levels and metabolic activity of P450s in the livers of wild-type (WT) and double-mutant (D) mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations [PKN1 T778A/T778A; PKN3 -/-] were determined after treatment with activators for receptor-type transcription factors. mRNA and protein levels and metabolic activity of CYP2B10 were significantly higher in D mice treated with the CAR activator phenobarbital (PB) but not with 1,4-bis((3,5-dichloropyridin-2-yl)oxy)benzene compared with WT mice. We examined the CAR-dependent pathway regulated by PKN after PB treatment because the extent of CYP2B10 induction in WT and D mice was notably different in response to treatment with different CAR activators. The mRNA levels of Cyp2b10 in primary hepatocytes from WT and D mice treated with PB alone or in combination with Src kinase inhibitor 1 (SKI-1) or U0126 (a mitogen-activated protein kinase inhibitor) were evaluated. Treatment of hepatocytes from D mice with the combination of PB with U0126 but not SKI-1 significantly increased the mRNA levels of Cyp2b10 compared with those from the corresponding WT mice. These findings suggest that PKN may have inhibitory effects on the Src-receptor for activated C kinase 1 (RACK1) pathway in the CAR-mediated induction of Cyp2b10 in mice livers. SIGNIFICANCE STATEMENT: This is the first report of involvement of PKN in the transcriptional regulation of P450s. The elucidation of mechanisms responsible for induction of P450s could help optimize the pharmacotherapy and improve drug development. We examined whether the mRNA and protein levels and activities of P450s were altered in double-mutant mice harboring both PKN1 kinase-negative knock-in and PKN3 knockout mutations. PKN1/3 negatively regulates CAR-mediated induction of Cyp2b10 through phosphorylation of a signaling molecule in the Src-RACK1 pathway.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Família 2 do Citocromo P450/metabolismo , Fígado/metabolismo , Proteína Quinase C/metabolismo , Esteroide Hidroxilases/metabolismo , Transcrição Gênica/fisiologia , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Família 2 do Citocromo P450/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Esteroide Hidroxilases/genética , Transcrição Gênica/efeitos dos fármacos
13.
Oxid Med Cell Longev ; 2021: 5521196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194603

RESUMO

Carbon monoxide releasing molecule-3 (CORM-3) has been shown to protect inflammatory diseases via the upregulation of heme oxygenases-1 (HO-1). However, in rat brain astrocytes (RBA-1), the mechanisms underlying CORM-3-induced HO-1 remain poorly defined. This study used western blot, real-time PCR, and promoter activity assays to determine the levels of HO-1 expression and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE) to measure reactive oxygen species (ROS). We found that CORM-3-induced HO-1 expression was mediated through ROS generation by Nox or mitochondria. The signaling components were differentiated by pharmacological inhibitors and small interfering RNA (siRNA). Subcellular fractions, immunofluorescent staining, and chromatin immunoprecipitation assay were used to evaluate the nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The roles of mTOR and FoxO1 in CORM-3-stimulated responses are still unknown in RBA-1 cells. Our results demonstrated that transfection with siRNAs or pretreatment with pharmacological inhibitors attenuated the levels of HO-1 and phosphorylation of signaling components including Akt, mTOR, FoxO1, and Nrf2 stimulated by CORM-3. Moreover, pretreatment with N-acetyl-L-cysteine, diphenyleneiodonium chloride, apocynin, or rotenone blocked nuclear translocation and promoter binding activity of Nrf2 induced by CORM-3. The present study concluded that in RBA-1 cells, CORM-3-induced HO-1 expression is, at least partially, mediated through Nox and mitochondria/ROS-dependent PI3K/Akt/mTOR cascade to activate FoxO1 or ROS leading to activation of Nrf2 activity.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Compostos Organometálicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/biossíntese , Humanos , Ratos , Transfecção
14.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071003

RESUMO

Superoxide dismutase (SOD) is a major antioxidant enzyme for superoxide removal, and cytoplasmic SOD (SOD1) is expressed as a predominant isoform in all cells. We previously reported that renal SOD1 deficiency accelerates the progression of diabetic nephropathy (DN) via increasing renal oxidative stress. To evaluate whether the degree of SOD1 expression determines regeneration capacity and sarcopenic phenotypes of skeletal muscles under incipient and advanced DN conditions, we investigated the alterations of SOD1 expression, oxidative stress marker, inflammation, fibrosis, and regeneration capacity in cardiotoxin (CTX)-injured tibialis anterior (TA) muscles of two Akita diabetic mouse models with different susceptibility to DN, DN-resistant C57BL/6-Ins2Akita and DN-prone KK/Ta-Ins2Akita mice. Here, we report that KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, exhibit delayed muscle regeneration after CTX injection, as demonstrated by the finding indicating significantly smaller average cross-sectional areas of regenerating TA muscle myofibers relative to KK/Ta-wild-type mice. Furthermore, we observed markedly reduced SOD1 expression in CTX-injected TA muscles of KK/Ta-Ins2Akita mice, but not C57BL/6-Ins2Akita mice, along with increased inflammatory cell infiltration, prominent fibrosis and superoxide overproduction. Our study provides the first evidence that SOD1 reduction and the following superoxide overproduction delay skeletal muscle regeneration through induction of overt inflammation and fibrosis in a mouse model of progressive DN.


Assuntos
Nefropatias Diabéticas/complicações , Músculo Esquelético/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Sarcopenia/etiologia , Superóxido Dismutase-1/efeitos dos fármacos , Animais , Cardiotoxinas/toxicidade , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Progressão da Doença , Indução Enzimática/efeitos dos fármacos , Fibrose , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Mesângio Glomerular/patologia , Inflamação , Insulina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase-1/biossíntese , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/fisiologia , Superóxidos/metabolismo
15.
Drug Metab Dispos ; 49(8): 668-678, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34035124

RESUMO

Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and PXR/CAR knockout (KO) HepaRG cells, as well as a PXR reporter gene assay, were used to investigate the mechanism of CYP3A4 and CYP2B6 induction by prototypical substrates and a group of compounds from the Merck KGaA oncology drug discovery pipeline. The basal and inducible gene expression of CYP3A4 and CYP2B6 of nuclear hormone receptor (NHR) KO HepaRG relative to control HepaRG was characterized. The basal expression of CYP3A4 was markedly higher in the PXR (10-fold) and CAR (11-fold) KO cell lines compared with control HepaRG, whereas inducibility was substantially lower. Inversely, basal expression of CYP3A4 in PXR/CAR double KO (dKO) was low (10-fold reduction). Basal CYP2B6 expression was high in PXR KO (9-fold) cells which showed low inducibility, whereas the basal expression remained unchanged in CAR and dKO cell lines compared with control cells. Most of the test compounds induced CYP3A4 and CYP2B6 via PXR and, to a lesser extent, via CAR. Furthermore, other non-NHR-driven induction mechanisms were implicated, either alone or in addition to NHRs. Notably, 5 of the 16 compounds (31%) that were PXR inducers in HepaRG did not activate PXR in the reporter gene assay, illustrating the limitations of this system. This study indicates that HepaRG is a highly sensitive system fit for early screening of cytochrome P450 (P450) induction in drug discovery. Furthermore, it shows the applicability of HepaRG NHR KO cells as tools to deconvolute mechanisms of P450 induction using novel compounds representative for oncology drug discovery. SIGNIFICANCE STATEMENT: This work describes the identification of induction mechanisms of CYP3A4 and CYP2B6 for an assembly of oncology drug candidates using HepaRG nuclear hormone receptor knockout and displays its advantages compared to a pregnane X receptor reporter gene assay. With this study, risk assessment of drug candidates in early drug development can be improved.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Indução Enzimática/efeitos dos fármacos , Eliminação Hepatobiliar , Hepatócitos , Receptor de Pregnano X/metabolismo , Linhagem Celular , Receptor Constitutivo de Androstano/metabolismo , Interações Medicamentosas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes/métodos , Eliminação Hepatobiliar/efeitos dos fármacos , Eliminação Hepatobiliar/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Farmacocinética , Medição de Risco
16.
Epilepsia ; 62(7): 1604-1616, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34046890

RESUMO

OBJECTIVE: This study was undertaken to determine whether epilepsy and antiepileptic drugs (including enzyme-inducing and non-enzyme-inducing drugs) are associated with major cardiovascular events using population-level, routinely collected data. METHODS: Using anonymized, routinely collected, health care data in Wales, UK, we performed a retrospective matched cohort study (2003-2017) of adults with epilepsy prescribed an antiepileptic drug. Controls were matched with replacement on age, gender, deprivation quintile, and year of entry into the study. Participants were followed to the end of the study for the occurrence of a major cardiovascular event, and survival models were constructed to compare the time to a major cardiovascular event (cardiac arrest, myocardial infarction, stroke, ischemic heart disease, clinically significant arrhythmia, thromboembolism, onset of heart failure, or a cardiovascular death) for individuals in the case group versus the control group. RESULTS: There were 10 241 cases (mean age = 49.6 years, 52.2% male, mean follow-up = 6.1 years) matched to 35 145 controls. A total of 3180 (31.1%) cases received enzyme-inducing antiepileptic drugs, and 7061 (68.9%) received non-enzyme-inducing antiepileptic drugs. Cases had an increased risk of experiencing a major cardiovascular event compared to controls (adjusted hazard ratio = 1.58, 95% confidence interval [CI] = 1.51-1.63, p < .001). There was no notable difference in major cardiovascular events between those treated with enzyme-inducing antiepileptic drugs and those treated with non-enzyme-inducing antiepileptic drugs (adjusted hazard ratio = .95, 95% CI = .86-1.05, p = .300). SIGNIFICANCE: Individuals with epilepsy prescribed antiepileptic drugs are at an increased risk of major cardiovascular events compared with population controls. Being prescribed an enzyme-inducing antiepileptic drug is not associated with a greater risk of a major cardiovascular event compared to treatment with other antiepileptic drugs. Our data emphasize the importance of cardiovascular risk management in the clinical care of people with epilepsy.


Assuntos
Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Doenças Cardiovasculares/etiologia , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Indução Enzimática/efeitos dos fármacos , Epilepsia/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Análise de Sobrevida , Resultado do Tratamento , Reino Unido/epidemiologia , País de Gales , Adulto Jovem
17.
Clin Pharmacol Ther ; 110(1): 248-258, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792897

RESUMO

Liver-derived small extracellular vesicles (sEVs), prepared from small sets of banked serum samples using a novel two-step protocol, were deployed as liquid biopsy to study the induction of cytochromes P450 (CYP3A4, CYP3A5, and CYP2D6) and organic anion transporting polypeptides (OATP1B1 and OATP1B3) during pregnancy (nonpregnant (T0), first, second, and third (T3) trimester women; N = 3 each) and after administration of rifampicin (RIF) to healthy male subjects. Proteomic analysis revealed induction (mean fold-increase, 90% confidence interval) of sEV CYP3A4 after RIF 300 mg × 7 days (3.5, 95% CI = 2.5-4.5, N = 4, P = 0.029) and 600 mg × 14 days (3.7, 95% CI = 2.1-6.0, N = 5, P = 0.018) consistent with the mean oral midazolam area under the plasma concentration time curve (AUC) ratio in the same subjects (0.28, 95% CI = 0.22-0.34, P < 0.0001; and 0.17, 95% CI = 0.13-0.22, P < 0.0001). Compared with CYP3A4, liver sEV CYP3A5 protein (subjects genotyped CYP3A5*1/*3) was weakly induced (≤ 1.5-fold). It was also possible to measure liver sEV-catalyzed dextromethorphan (DEX) O-demethylation to dextrorphan (DXO), correlated with sEV CYP2D6 expression (r = 0.917, P = 0.0001; N = 10) and 3-hour plasma DXO-to-DEX concentration ratio (r = 0.843, P = 0.002, N = 10), and show that CYP2D6 was not induced by RIF. Nonparametric analysis of liver sEV revealed significantly higher CYP3A4 (3.2-fold, P = 0.003) and CYP2D6 (3.7-fold, P = 0.03) protein expression in T3 vs. T0 women. In contrast, expression of both OATPs in liver sEV was unaltered by RIF administration and pregnancy.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Vesículas Extracelulares/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Adulto , Área Sob a Curva , Sistema Enzimático do Citocromo P-450/genética , Dextrometorfano/farmacocinética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Feminino , Genótipo , Humanos , Biópsia Líquida , Fígado/enzimologia , Masculino , Midazolam/farmacocinética , Gravidez , Proteômica , Rifampina/farmacologia , Adulto Jovem
18.
Inflammation ; 44(4): 1620-1628, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33751358

RESUMO

The currently used anti-cytokine therapeutic antibodies cannot selectively neutralize pathogenic cytokine signalling that cause collateral damage to protective signalling cascades. The single domain chain firstly discovered in Camelidae displays fully functional ability in antigen-binding against variable targets, which has been seemed as attractive candidates for the next-generation biologic drug study. In this study, we established a simple prokaryotic expression system for a dual target-directed single domain-based fusion protein against the interleukin-6 receptor and human serum, albumin, the recombinant anti-IL-6R fusion protein (VHH-0031). VHH-0031 exhibited potent anti-inflammatory effects produced by LPS on cell RAW264.7, where the major cytokines and NO production were downregulated after 24 h incubation with VHH-0031 in a dose-dependent manner. In vivo, VHH-0031 presented significant effects on the degree reduction of joint swelling in the adjuvant-induced arthritis (AIA) rat, having a healthier appearance compared with the dexamethasone. The expression level of JNK protein in the VHH-0031 group was significantly decreased, demonstrating that VHH-0031 provides a low-cost and desirable effect in the treatment of more widely patients.


Assuntos
Anti-Inflamatórios/imunologia , Artrite Experimental/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Albumina Sérica Humana/antagonistas & inibidores , Anticorpos de Domínio Único/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Especificidade de Anticorpos , Artrite Experimental/imunologia , Citocinas/metabolismo , DNA Complementar/genética , Dexametasona/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Humanos , Interleucina-6/imunologia , Lipopolissacarídeos/toxicidade , MAP Quinase Quinase 4/biossíntese , MAP Quinase Quinase 4/genética , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Óxido Nítrico/metabolismo , Conformação Proteica , Células RAW 264.7 , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Albumina Sérica Humana/imunologia , Anticorpos de Domínio Único/genética
19.
Biochem Biophys Res Commun ; 549: 34-39, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33662666

RESUMO

Systemic sclerosis (SSc) is an inflammatory fibrotic disease characterized by an excessive extracellular matrix deposition in the skin and internal organs. One fibrotic key event remains the fibroblast-to-myofibroblast differentiation that is controlled by a combination of mechanical and soluble factors, such as transforming growth factor-ß1 (TGF-ß1) and interleukin-1ß (IL-1ß). One important myofibroblast biomarker is human xylosyltransferase-I (XT-I), the initial enzyme in proteoglycan biosynthesis. Increased serum XT activity was quantified in SSc, but the underlying cellular mechanisms remain elusive. This study aims to determine the cellular basis of XT-I induction in SSc by using a myofibroblast cell culture model with SSc fibroblasts (SScF) and healthy control fibroblasts. We found that SScF exhibit a higher extracellular XT-I activity compared to control fibroblasts. This increased XT-I activity in SScF was demonstrated to be mediated by an enhanced autocrine TGF-ß signaling. Upon IL-1ß treatment, SScF showed an increased mRNA expression level of XT-I and TGF-ß receptor II (TGFBR2), while healthy control fibroblasts did not, pointing towards an involvement of IL-1ß in the cytokine-mediated XT-I induction. Performing microRNA (miRNA) inhibition experiments in the presence of TGF-ß1, we showed that the pro-fibrotic effect of IL-1ß may be mediated by a miRNA-21/TGF-ß receptor II axis, enhancing the autocrine TGF-ß signaling in SScF. Taken together, this study improves the mechanistic understanding of fibrotic XT-I induction in SSc by identifying a hitherto unknown IL-1ß-mediated miRNA-21/TGFBR2 regulation contributing to the enhanced XYLT1 expression and XT-I activity in SScF.


Assuntos
Citocinas/farmacologia , Fibroblastos/enzimologia , Fibroblastos/patologia , Pentosiltransferases/biossíntese , Escleroderma Sistêmico/enzimologia , Pele/patologia , Indução Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1beta/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Pentosiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Fator de Crescimento Transformador beta1/farmacologia
20.
Biomed Pharmacother ; 137: 111412, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761618

RESUMO

OBJECTIVE: To receive information about carbamazepine and its active metabolite 10,11-epoxide transport into mature milk and suckling infants. METHODS: In this cohort study, maternal serum, mature milk, and infant serum carbamazepine and epoxide levels were measured between the 6th and 29th postnatal day (carbamazepine in 1990-2017, epoxide in 1997-2017). Paired maternal serum, infant serum and milk levels were used for the assessment of ratios of this levels. The influence of combined treatment with enzyme-inducing antiepileptic drugs and valproic acid was assessed. Relationship between maternal serum, infant serum, and milk levels was also evaluated. RESULTS: Maternal carbamazepine levels were 1.4-10.4 mg/L, milk 0.5-6.7 mg/L and infant 0.5-2.6 mg/L. Maternal 10,11-epoxide levels were 0.3-5.4 mg/L, milk 0.3-3.7 mg/L and infant 0.3-0.6 mg/L. Highly significant correlations were observed exclusively between milk and maternal serum levels of both carbamazepine and 10,11-epoxide. Concomitant administration of enzyme-inducing antiepileptic drugs significantly increased the maternal apparent oral clearance of carbamazepine by approximately 130%. Carbamazepine combined with valproic acid significantly increased epoxide levels in milk and maternal serum but not in breastfed infants. CONCLUSIONS: In breastfed infants, carbamazepine levels did not reach the lower limit of the therapeutic range used for the general epileptic population, and the majority of epoxide levels were less than the lower limit of quantification. Routine monitoring of carbamazepine in these infants is not compulsory. However, observation of breastfed infants is desirable. If signs of potential adverse reactions are evident, infant serum concentrations should be monitor.


Assuntos
Anticonvulsivantes/farmacocinética , Carbamazepina/farmacocinética , Adulto , Anticonvulsivantes/metabolismo , Biotransformação , Aleitamento Materno , Carbamazepina/metabolismo , Estudos de Coortes , Interações Medicamentosas , Monitoramento de Medicamentos , Indução Enzimática/efeitos dos fármacos , Compostos de Epóxi/metabolismo , Feminino , Humanos , Recém-Nascido , Masculino , Leite Humano/química , Leite Humano/metabolismo , Ácido Valproico/farmacocinética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...